
Trends
Gaze is directed to task- and goal-rele-
vant scene regions.

Gaze control is based on predictions
concerning where specific goal- and
task-relevant objects are likely to be
found.

Predictions for gaze control are based
on knowledge gained from past experi-
ence with scenes.

Predictions are likely to draw on mem-
ory representations of specific scene
instances and general scene
categories.
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The recent study of overt attention during complex scene viewing has empha-
sized explaining gaze behavior in terms of image properties and image salience
independently of the viewer's intentions and understanding of the scene. In this
Opinion article, I outline an alternative approach proposing that gaze control in
natural scenes can be characterized as the result of knowledge-driven predic-
tion. This view provides a theoretical context for integrating and unifying many
of the disparate phenomena observed in active scene viewing, offers the
potential for integrating the behavioral study of gaze with the neurobiological
study of eye movements, and provides a theoretical framework for bridging gaze
control and other related areas of perception and cognition at both computa-
tional and neurobiological levels of analysis.

Let's Take a Look
Some 85 years ago, Guy Thomas Buswell established that viewers tend to look at the regions of
scenes that are likely to contain the information that is most meaningful and relevant [1]
(Figure 1, Key Figure). Similarly, in classic textbook demonstrations Alfred Yarbus showed
that where we look in a complex scene is strongly influenced by our current goals and viewing
task [2]. In the years since those groundbreaking studies, the role of knowledge in the control of
gaze and attention in complex, meaningful scenes has been repeatedly shown. Despite this
overwhelming evidence, the literature over the past couple of decades has focused almost
exclusively on trying to explain where people look in scenes in terms of image properties alone,
ignoring the viewer's understanding of the scene. This tendency to focus on the image rather
than the viewer's understanding of the meaning of the scene is likely to be due in part to a
version of the principle of the drunkard's search, in which the inebriated driver looks for lost car
keys under a streetlamp because that is where the light is. In the case of attention in scenes,
image properties fall under the light of the streetlamp; it is far easier to build models that account
for where we attend based on image properties than it is to build models based on scene
meaning and viewer goals. A model based on image properties requires methods to measure
and quantify those properties, a condition that is already within grasping distance given
advances in computational vision and visual neuroscience. By contrast, a model based on
a full understanding of the scene, its meaning, and its relationship to the viewer's current goals
and task requires a relatively complete model of human cognition, and that is still a few years off.
From this perspective it makes sense that investigators have tended to focus on the tractable
and put off the less tractable for another day.

Clearly, however, the image- or saliency-based approach is fundamentally limited when it comes
to accounting for how human viewers direct their attention through real scenes [3–7]. The
question then becomes how to make theoretical progress in a way that takes viewer knowledge
into account. In recent years a new framework for understanding how the brain thinks and
perceives has emerged. This framework conceptualizes the brain as a ‘prediction machine’ [8], a
system that uses past experience to generate expectations or predictions concerning what and
where items and events are likely to be encountered next [9–11]. When these predictions are
supported by incoming evidence from the environment, all is well and nothing new is learned.
When a prediction is partially or completely wrong, however, the knowledge that was used to
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Glossary
Covert attention: selective
processing of a location or object at
the expense of other locations or
objects via internal processes without
a corresponding movement of the
eyes.
Fixation: stable eye position directed
toward a specific scene location or
object used for visual information
acquisition.
Fovea: the highest-resolution region
of the retina.
Gaze control: the process of
directing fixation through a scene in
real time in the service of ongoing
perceptual, cognitive, and behavioral
activity.
Overt attention: selective
processing of a location or object at
the expense of other locations or
objects due to a movement of the
eyes.
Saccade: a fast, ballistic eye
movement that reorients fixation from
one location to another within a
scene.
generate that prediction has to be updated so future predictions can be more accurate. The
upshot is that errors of prediction lead to knowledge gain. For some proposals, only information
associated with prediction error is coded from the environment, a process called predictive
coding [12–14].

In this Opinion article, I outline the proposal that gaze control (see Glossary) in natural scenes
can be understood as the consequence of spatial prediction. Specifically, the proposal is that
where a viewer looks and attends in a complex scene is the result of a prediction about where the
most meaningful and task-relevant information is to be found in that scene. Adopting this view
provides an overarching theoretical context for unifying many of the disparate phenomena
observed in active scene viewing. For example, it offers potential for integrating the behavioral
study of gaze control with the neurobiological study of eye movements more generally [15]. It
also provides a theoretical framework that can assist in bridging between gaze control and other
related areas of perception, cognition, and motor control. It provides a potential framework for
understanding how overt and covert attention are related. Furthermore, taking this perspec-
tive provides potential for integrating the study of language–vision interaction, where linguistic
input can determine where to look [16,17] and where we look can influence what we say [18,19].

Here the emphasis is specifically on considering gaze control in terms of spatial prediction, since
most research on overt attention in scenes has focused on understanding where people look
[3,20–22]. However, a more encompassing theoretical framework would extend this approach
to other aspects of gaze control as well, such as explaining the amount of time each scene region
is fixated as a consequence of predictions about location, identity, and meaning (Box 1).

The Prediction Approach to Gaze Control: Examples
Four brief examples serve to illustrate the prediction approach to gaze control and the nature of
the phenomena that support it. These examples are meant to be illustrative rather than
exhaustive.

Object Search in Scenes
People can find common objects very quickly in complex real-world scenes. In experiments
demonstrating this ability, target objects are placed at either an expected location or an
unexpected location in each scene [23–28]. Viewers are asked to find those objects as quickly
as possible. A typical experiment presents the name (or picture) of the target object for the
current trial followed by the scene, which may or may not contain the object. The key finding is
that viewers typically find objects effortlessly, often within one or two eye movements [23,24,29–
31]. Indeed, viewers are so good at this that it is often not possible to study learning or repetition
effects for real object search because search performance is already at ceiling [32]. Furthermore,
viewers can rapidly find objects in scenes from a brief scene glimpse based on extraction of the
‘gist’ of the scene and can quickly find objects based on that gist even when the scene is no
longer visible [33–35]. Viewers can also quickly find an object they are searching for when that
object is not at all visually salient as long as the location of the searched-for object is constrained
by the scene's meaning and structure [5,30]. For example, a coffee cup half-hidden by a box of
Wheaties will still be fixated very quickly if it is in its expected location on the kitchen table [4]. How
can we account for the strong influence of scene context on object search? The proposal here is
that viewers use learned knowledge about where a given object is likely to be found from past
experience with a given scene category to predict (given a new instance of that scene category)
the location of the target, and this prediction is used to direct gaze.

Scene-Based Contextual Cueing
Because object search in scenes is so efficient, it can be difficult to study the learning processes
associated with establishing the contextual relationships that underlie spatial prediction [32]. To
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Key Figure

Viewers Direct Their Gaze to Meaningful and Informative Scene Regions.

(A) (B)

Figure 1. (A) Example viewer's first six fixations (red dots) while searching for coffee cups. Red lines represent saccades and the black dot represents the initial fixation
position at scene onset. (B) Example of first fixations for twelve viewers searching for paintings (red dots) and coffee cups (blue dots). In both cases, fixations are placed in
the scene based on predictions concerning where the search targets should be found. Figure by Henderson, 2016; available at https://dx.doi.org/10.6084/m9.
figshare.4245446.v1 under a CC-BY4.0 license.
overcome this challenge, scene-based contextual cueing provides an experimental method in
which viewers learn new scene–object spatial constraints across search trials. For example, in a
typical scene-based contextual cueing study viewers are presented with arbitrary object–scene
pairs such as letters embedded in photographs [36–40]. The arbitrary nature of the pairings
Box 1. Looking Time

Overt attention in a scene involves both guiding gaze to the appropriate location and holding attention in that location for
the appropriate amount of time given current processing demands [73,74]. The amount of time that gaze is directed to
each scene region is highly sensitive to the difficulty of understanding the information in the scene [75–78]. A particularly
strong effect of processing difficulty on fixation time is produced by the predictability of the currently fixated object in the
context of its scene: unpredictable objects are fixated for more time than predictable objects [23,24,79]. In a typical
experiment demonstrating this effect, objects are manipulated so that they are consistent or inconsistent with the overall
meaning of the scene in some way. For example, inconsistency might be created by placing an object in a contextually
inappropriate scene (e.g., placing a live chicken in a bedroom) or by violating physical constraints like support (e.g.,
placing a chicken so that it is floating in mid-air). Viewers are asked to view these scenes while they perform a task. For
example, they might be asked to view scenes to find particular objects, to remember the scenes for later, or simply to
decide how much they like each scene. Fixation time is then measured on objects when they are contextually consistent
or inconsistent. The main result, replicated across tasks and studies, is that consistent objects are fixated for less time
than inconsistent objects.

I propose that this finding can again be seen as a consequence of prediction on gaze control. Viewers use learned
knowledge about the objects that are found in a given scene category to predict which objects will be encountered.
These predictions then influence gaze, with prediction violations leading to an increase in the amount of time overt
attention is directed to the current object. This increased time allows knowledge representations to be updated to take
into account the unexpected information.
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supports the investigation of questions concerning how spatial constraints are learned, the time
course of learning, and the nature of the information that is learned. Concretely, in a typical
scene-based contextual cueing experiment, viewers search for a target letter that has been
embedded in each scene. When they find a target, they identify it with a button press. A trial
sequence is divided into blocks. Learning blocks are followed by test blocks. Two types of trial
are presented in each block. A novel trial shows a scene that the participant has not previously
seen in the experiment. A repeated trial presents a scene that the participant has seen before.
Critically, the target's location in each repeated scene is fixed so that the viewer can learn the
spatial constraints for each scene–target pairing over repetitions. The target's identity is
randomly selected with each repetition so that the viewer cannot simply learn pairings of scenes
and target identities but instead must learn the locations of the targets. (The experimenter can
also check that the target has been found by analyzing the viewer's fixation location at the time of
response.) Each block randomly intermixes repeated scenes with novel scenes. Typically,
viewers are not told about the block structure or the repetition of scenes and are left to pick
up the spatial regularities implicitly, although in scene-based contextual cueing they are usually
aware of the relationships [38,40]. In the test block, search performance is compared in repeated
and novel scenes. (Unrepeated scenes in other learning blocks also provide a control for
assessing baseline search time.) The critical finding is that, under these conditions, viewers
learn the target locations very quickly, with five to seven repetitions typically sufficient to reach
asymptotic search performance. Eye-tracking data show that the contextual cueing effect
reflects a change in gaze behavior. After learning, fixation is directed very quickly and efficiently
to the learned target location, often in one or two eye movements. The brain uses learned spatial
regularities in the environment to predict where the target will be found and eye movements are
based on this prediction.

Dynamic, Real-World Events
So far we have considered static images. What about moving images that depict ongoing
dynamic events that unfold over extended time? It turns out that when watching dynamic images
depicting real events, viewers are just as efficient at directing their gaze to relevant locations as
they are when they view static images despite dynamic images being continuously updated. For
example, in a set of classic studies using an early portable eye tracker, cricket batters were found
to direct their attention to the location on the ground where the ball will bounce on the way to the
batsman [41]. Interestingly, batters direct their gaze to this bounce point even before the ball
reaches that point [41,42]. The nature of the bounce is important in determining the trajectory
that the ball will take to the batter and attending to this point is therefore critical for good
performance. So, to take best advantage, batters shift their gaze to the bounce point based on a
prediction about where the ball will bounce even before it arrives so that they can predict where
the ball will be when it reaches them. This type of prediction is not restricted to cricket [43,44].
Figure 2 shows an example from my laboratory, this time from tennis. In this study, part of the
Dynamic Images and Eye Movements project [45], viewers watched video of a tennis match
while their eye movements were recorded. We then analyzed the probability that viewers fixated
the bounce point of the serve before the ball arrived. As can be seen in Figure 2, there was a
strong tendency for viewers to predict the bounce point and to use this prediction to drive
attention and gaze. Notice that this predictive act cannot be accounted for by image features or
visual salience, because the bounce point was not defined by differences in image features or
salience and the exact bounce point changed from serve to serve. Interestingly, as with cricket,
viewers often looked at the bounce point tens of milliseconds before the ball arrived. Analysis of
this behavior suggests that viewers initially watched the motion of the server and then shifted
gaze via a saccade to the bounce point as the ball left the racket. Attention was guided by a
prediction about the location of the bounce point generated from the timing and motion of
the serve.
18 Trends in Cognitive Sciences, January 2017, Vol. 21, No. 1
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Figure 2. Viewers Direct Their Gaze to Meaningful Scene Regions in Dynamic Events. When watching a tennis
match, viewers predict the bounce point and use this prediction to direct fixation. (A) shows a frame from the video with the
scoring regions superimposed. (B) shows the cumulative percentage of viewers looking in the region around the bounce
point before the ball arrives (negative time points) and after the ball arrives (positive time points) for regions of varying size
around the bounce point. Viewers start looking to the bounce point before the ball arrives, often generating a saccade from
the server's racket to the bounce point as the ball leaves the racket. Figure by Henderson, 2016; available at https://dx.doi.
org/10.6084/m9.figshare.4245440.v1 under a CC-BY4.0 license.
Self-Generated Real-World Events
Another type of dynamic image relates to actions in the context of self-generated events. Similar
predictive gaze behavior is observed in these dynamic events. For example, when making a
peanut-butter-and-jelly sandwich, viewers shift their gaze to objects in the local environment just
Trends in Cognitive Sciences, January 2017, Vol. 21, No. 1 19



as those objects are needed for the task. That is, viewers look at the loaf of bread before picking
it up to retrieve two slices, look at the top of the peanut butter jar before unscrewing the lid, look
at the knife before picking it up, look at the jelly jar opening before scooping up a knife-full, and so
on [46,47]. In each case, the looking action is based on current task needs and a prediction
about where the required item is to be found [47–50]. Here, however, the predictions are
generated from an action schema for making a sandwich. Interestingly, it appears that viewers
initially spend some time scanning the environment to find the locations of all of the needed items
before they start their task [47]. This behavior appears to be designed to establish a represen-
tation of the scene that the action schema can operate over in generating spatial predictions. In a
sense, the quick look-ahead scan sets up an episodic representation of the current scene. This
episodic scene representation can then provide a foundation for precise spatial prediction in the
same way that scene gist can be used as the basis for probabilistic spatial prediction given a
conceptual class of scenes [4,31,33]. In other words, episodic representations of specific
scenes support predictions about specific instances (e.g., in this particular kitchen a coffee
cup can be found exactly at this location) and conceptual representations of scene classes
support predictions about those classes (in kitchens generally, coffee cups can typically be
found at these locations), with both types of representation supporting predictions that can drive
where viewers look.

What Do We Gain by Considering Gaze Control as Prediction?
Thinking about gaze control as prediction offers several advantages over other conceptualiza-
tions. First, it allows integration with other areas of cognitive science and neuroscience that
consider the fundamental function of brains and their cognitive systems to be the generation of
predictions [8,10,51]. This perspective has recently been adopted in many areas of cognitive
science and cognitive neuroscience, including learning [52], memory [53–55], reward in motor
planning [56,57], object and event perception [58,59], language processing [60–64], high-level
scene perception [65], and reading [66,67] (Box 2). Taking a prediction approach to attentional
guidance in scenes therefore provides potential leverage for identifying general principles of brain
and cognition.

Second, thinking about gaze control as prediction may allow a more integrative approach to
understanding the cognitive and neural systems supporting both overt (i.e., gaze) and covert
(i.e., internal) spatial attention. For example, to the extent that covert attention plays a similar
functional role in vision and draws on similar cognitive and neural systems for control as overt
attention, it is likely that much of the description concerning the deployment of covert attention
can be embraced by the prediction approach [68]. Reframing covert attention as prediction is
illustrated by considering the classic Posner cueing task. In this task a cue directs covert
attention to one or the other side of a display area. A target then appears on the cued or uncued
Box 2. Reading

It is well known that gaze moves through text in a directed manner during reading [80,81]. Gaze primarily travels in one
direction (e.g., left to right for reading English). Most words are fixated, but some words are skipped and others are fixated
multiple times. Sometimes gaze moves backward so that previously read text can be re-read. Can eye movements
during reading be understood as a consequence of prediction concerning where useful information is to be found given
the current level of comprehension? From the prediction perspective, forward movements are due to the expectation that
each new word contains the next incrementally most important syntactic and semantic information in the text [82,83].
Occasionally, however, the next word is constrained enough that there is little to be gained from fixating it, and in that case
the word can be skipped. Gaze is then sent to the location (e.g., two words downstream) predicted to contain the most
useful information. Similarly, when comprehension is very difficult or fails altogether, attention is sent back into an earlier
region of the text. The region that is fixated is the region that is predicted to contain the most useful information for
unraveling the current comprehension difficulty [81,84]. In this sense, sending the eyes to a particular region of text (the
next word, two words ahead, or five words back) can be thought of as a consequence of prediction concerning where the
most useful information for understanding the text is to be found at each point in time.
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Outstanding Questions
How precise are the spatial predictions
that are used to guide gaze?

Are the predictions that guide gaze
used strategically or automatically?

Can the prediction approach to gaze
control in natural scenes be extended
to gaze control in tasks such as face
perception, reading (Box 2), and spatial
navigation?

Can the prediction approach to gaze
control be extended to account for
both where fixation is directed and
how long fixation is directed there
(Box 1)?

How are the memory structures that
generate predictions for gaze control
encoded, stored, retrieved, and
deployed?
side with some probability (e.g., 80% likely on the cued side, 20% likely on the uncued side). The
participant's task is simply to press a button to indicate that the target has appeared. The
definitive finding is that response time is faster when the target appears at the cued than at
the uncued location, suggesting that attention has been directed to that location before the
target's appearance. One simple extension of the current proposal is that covert visual attention
is the internal manifestation of spatial prediction in the same way that overt attention (gaze) is the
external manifestation of prediction [69]. That is, we might say that the brain has predicted the
appearance of the target at a particular location, and we refer to this predictive brain act as covert
attention.

At the neurobiological level of analysis, it is well known that many of the systems that are involved
in the neural control of eye movements are also involved in the control of covert visual attention
[70]. For example, neuroimaging studies in humans have demonstrated a network of brain
regions that appear to greatly overlap for overt and covert attention. One previous account of this
overlap derives from the premotor theory of attention, which posits that covert attention is due to
overt eye movement programming [71,72]. An alternative hypothesis consistent with the
prediction proposal is that the overlapping systems for overt and covert attention are associated
with prediction, and particularly with spatial prediction. In this view, eye movements and covert
visual attention are external and internal manifestations of the same spatial prediction system.
Rather than considering covert spatial attention as parasitic on overt attention, as in premotor
theory, this perspective leads to the idea that overt and covert attention are two ways for the
brain to capitalize on spatial prediction. That is, spatial prediction is the fundamental process,
manifest in both changes in perceptual weighting (covert attention) and the behavioral orienting
of the eyes (overt attention). Importantly, in this model the same underlying predictions drive both
types of attention. In summary, given that both overt and covert attention involve preselecting
scene locations for focused preferential processing, it seems reasonable (and is more parsimo-
nious to suppose) that this selection is the result of the same underlying predictive process.

Concluding Remarks
An approach to the brain that focuses on prediction has provided new insights into many
cognitive domains. A natural extension of this approach is to the study of how we orient our
attention over complex natural scenes. Attentional orienting in natural viewing involves gaze
control, directing the high-resolution fovea and its associated neural machinery to important and
informationally rich regions of the visual world. A potentially fruitful way to think about gaze
control is in terms of predictions concerning where important and informative information is to be
found given the current needs of the cognitive system. Although the focus here has been on gaze
control in scenes, the general predictive processing approach to overt attention may profitably
be applied to any area of active vision in which attention plays a role, such as reading (Box 2),
face perception, driving, and navigation (see Outstanding Questions).
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