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Abstract

Perception of a complex visual scene requires that important regions be prioritized and
attentionally selected. What is the basis for this selection? Although much research has
focused on the spatial distribution of image salience as an important factor guiding
attention, relatively little work has focused on the spatial distribution of semantic fea-
tures (meaning) across a scene. To address this imbalance, we have recently developed
a new method for measuring, representing, and evaluating the spatial distribution of
meaning in scenes and its influence on attention. In this method, the spatial distribution
of meaning is represented as a meaning map. Meaning maps are generated from
crowd-sourced responses given by naïve subjects who rate a large number of scene
patches drawn from each scene. Meaning maps are coded in the same format as
traditional saliency maps, and therefore both types of maps can be directly compared
and evaluated against the spatial distribution of attention derived from viewers’ eye
fixations. In this review I provide an overview of my lab’s research comparing the influ-
ences of meaning and image salience on attentional guidance in real-world scenes.
Overall, we have found that both the spatial distribution of meaning and physical
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salience across a scene predict the spatial distribution of attention, but when the
correlation between meaning and image salience is statistically controlled, only mean-
ing uniquely accounts for variance in attention. I discuss the theoretical implications
of these findings and point to new questions for the future.

Explaining how we perceive real-world visual environments is a funda-

mental goal in visual cognition and vision science. Such an explanation will

require unraveling how the brain solves the difficult computational prob-

lems that arise given the complex visual scenes we encounter in our daily

lives. The world contains an enormous amount of visual information, but

the processing capacity of human vision and visual cognition are severely

limited in their bandwidth: Only a small fraction of the information latent

in the visual world can be analyzed at any given moment. Efficient visual

cognition therefore requires selecting the information that is most relevant

at the current moment for understanding and acting on the world.

A key mechanism for making real-world scene perception tractable is

visual attention, the mechanism of preferentially selecting some regions of

a scene over others for detailed analysis. In natural scene perception, atten-

tional selection is associated with directing the eyes sequentially through a

scene (Buswell, 1935; Hayhoe & Ballard, 2005; Henderson, 2003, 2017;

Henderson & Hollingworth, 1999; Land & Hayhoe, 2001; Liversedge &

Findlay, 2000; Rayner, 2009; Yarbus, 1967).

The need to select and attend to individual scene regions in order to

perceive and understand the contents of those regions is not immediately

intuitive. Indeed, the classic change blindness phenomenon in which (for

example) an object can completely disappear and reappear in a scene is

so striking exactly because it upends our intuitions about what we can visu-

ally apprehend all at once (Henderson & Hollingworth, 2003; Rensink,

O’Regan, & Clark, 1997; Simons & Levin, 1997). And as “change blindness

blindness” demonstrated, most people believe they are seeing and

understanding the entire visual scene in front of them even though this is

demonstrably false (Levin, Momen, Drivdahl, & Simons, 2000). Contrary

to this intuition, typically the eyes must fixate each scene region containing

relevant information for the viewer to perceive that region’s content,

including visual details, identities, and semantic features. It is also typically

the case that the local scene regions must be attended for the contents of

those regions to be encoded into short- and long-term memory. What

we see and understand about the world is in a very real sense determined

by where we look (Henderson, 2003).
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Given the importance of visual attention for visual perception and

cognition, a critical issue concerns understanding the nature of the represen-

tations and processes that guide the eyes through a visual scene in real time

(Henderson, 2011). Historically the pendulum has tended to swing back

and forth between emphasizing the cognitive factors that guide attention

and the physical features that guide attention. For example, in a classic text-

book study by Yarbus (1967), the parts of a painting that were looked at

depended on the question the viewer was trying to answer. When asked

about the ages of the people in the picture, the viewer spent more time

attending to the faces of those people.When asked to determine the material

circumstances of those people, the viewer spent more time on furniture and

other artifacts. These results are classically taken to demonstrate that the

viewer’s task interacts with their general understanding of the image and

of the world to guide their attention to relevant image regions.

Although it is widely acknowledged that a perceiver’s understanding of a

scene and associated stored knowledge play an important role in attentional

guidance, recently the majority of research in this field has nonetheless

focused on physical image properties and physical salience as the primary

drivers of attention. According to what we refer to as image guidance, atten-

tion is directed to scene regions based on physical image properties generated

in a bottom-up manner from the scene (Borji, Parks, & Itti, 2014; Borji,

Sihite, & Itti, 2013; Itti & Koch, 2001; Parkhurst, Law, & Niebur,

2002a). These models generally propose that attention is controlled by

contrasts in primitive image features such as luminance, color, and edge

orientation (Treisman & Gelade, 1980; Wolfe, 1994; Wolfe & Horowitz,

2017). A central concept in this theory is the saliency map, which is gener-

ated by compiling the local regions of contrast or difference over the prim-

itive features, typically in a winner take all scheme. The saliency map then

serves as the basis for attentional control, with attention captured or “pulled”

to the currently most visually salient scene region represented by the saliency

map (Borji et al., 2013, 2014; Harel, Koch, & Perona, 2006; Itti & Koch,

2001; Itti, Koch, & Niebur, 1998; Koch & Ullman, 1985; Parkhurst,

Law, &Niebur, 2002b). On this view, because the saliency map is generated

from primitive features that are semantically uninterpreted, scene regions

are prioritized for attentional selection based on physical image properties

alone. That is, in this view attentional guidance is at its heart based on a

reaction to the physical image properties of the scene. For this reason, we

refer to this general class of explanation for attentional guidance as Image

Guidance Theory.
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It is helpful to note that although “salience” and “saliency map” have

traditionally been reserved in the scene attention literature (and the human

cognitive and cognitive neuroscience literatures more generally) for image-

based saliency of the sort discussed above, it has taken on different inter-

pretations in other literatures, and especially in computer vision, where it

now often refers to the output of any model that is used to predict attention

regardless of the underlying assumptions and computations. This difference

in definitions can lead to confusion. For this reason, it is helpful to be clear

about the definition used in this chapter. Here I follow the tradition of reserv-

ing the terms “salience” and “saliency map” for concepts in the Koch and

Ullman tradition based on the idea that the human visual system computes

difference maps from semantically uninterpreted primitive image features

that are then combined and used to guide attention (Koch & Ullman,

1985). To highlight this definition, we also sometimes use “image salience”

and “physical salience” as synonyms of “salience.” We can then contrast

theories based on these types of ideas with theories that posit other bases

for prioritizing attention over a scene.

1. Cognitive guidance of attention

We can contrast image guidance with cognitive guidance (Henderson,

Brockmole, Castelhano, & Mack, 2007; Henderson, Malcolm, & Schandl,

2009). Cognitive guidance turns the emphasis back around to the funda-

mental idea that in complex meaningful scenes, attention is directed to scene

regions based on cognitive representations that are activated or retrieved in

identification, memory, and semantic systems given the physical scene input,

plus the prior and general state of the cognitive system. In this view, visual

attention is primarily controlled by the viewer’s current interpretation and

understanding of a scene’s semantic content, including the content of specific

objects and local sub-regions of the scene (Buswell, 1935; Yarbus, 1967).

When a viewer is engaged in an explicit task or has explicit goals, represen-

tations of the task and goals are also cognitively active, and semantically

relevant regions are prioritized according to those active goal representations

(Hayhoe & Ballard, 2005; Hayhoe, Shrivastava, Mruczek, & Pelz, 2003;

Henderson, 2003, 2007; Henderson & Hollingworth, 1999; Tatler, Hayhoe,

Land, & Ballard, 2011; Võ & Wolfe, 2013). For example, when trying to

determine the material wealth of the occupants of a room, a viewer’s attention

will be directed to scene elements such as clothing and furniture by active

cognitive representations of the scene interacting with the active goal represen-

tation (Yarbus, 1967).
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Cognitive knowledge structures relevant for guiding attention can be

based on memory systems that encode general concepts and semantic

features (semantic knowledge) as well as representations related to specific

previously experienced scenes (episodic knowledge), both of which can

interact with the viewer’s task and goals (Henderson et al., 2007, 2009;

Henderson & Ferreira, 2004; Henderson & Hollingworth, 1999). One

way to think about the distinction between cognitive guidance and image

guidance is that in image guidance, attention is “pulled” to scene regions

based on physical image properties, whereas in cognitive guidance, attention

is “pushed” by the cognitive system to scene regions based on an internal

model of the scene (Henderson, 2007). An important aspect of cognitive

guidance is that it emphasizes the central role of meaning and semantics

in directing attention. In general, cognitive guidance is consistent with

evidence suggesting that viewers attend to semantically informative regions

of a scene (Antes, 1974; Buswell, 1935; Loftus & Mackworth, 1978;

Mackworth & Morandi, 1967; Wu, Wick, & Pomplun, 2014; Yarbus,

1967), as well as regions that are task-relevant (Castelhano, Mack, &

Henderson, 2009; Einh€auser, Rutishauser, & Koch, 2008; Foulsham &

Underwood, 2007; Hayhoe & Ballard, 2014; Neider & Zelinsky, 2006;

Rothkopf, Ballard, & Hayhoe, 2007; Tatler et al., 2011; Torralba, Oliva,

Castelhano, & Henderson, 2006; Turano, Geruschat, & Baker, 2003;

Yarbus, 1967).

2. Cognitive guidance, cognitive relevance theory,
and the flat landscape

Henderson et al. (2009) proposed a general theoretical framework

for attention in scenes based on cognitive guidance that completely removed

the concept of an image-based saliency map and replaced it with

knowledge-based cognitive guidance operating over an alternative visuo-

spatial representation of potential attentional targets. In this view, which

we have referred to as the cognitive relevance framework (Henderson et al.,

2009), scene regions, typically objects (Nuthmann & Henderson, 2010), are

prioritized for attention based on cognitive knowledge structures interacting

with task goals as described above. Critically, in contrast to the key assumption

of image guidance, in this framework potential saccade targets generated from

the visual stimulus are not ranked for priority according to their physical

salience, but instead are ranked by cognitive relevance based on currently acti-

vated cognitive representations interacting with current goals. Of course,

the scene image in this model still plays a central role in two important ways:
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It serves as input for activating cognitive knowledge structures in

semantic and episodic memory, and it is used to generate a representation

of (unranked) potential attentional targets. However, critically, image fea-

ture contrasts do not directly provide the basis for attentional selection

and guidance as they do in image saliency models.

To make this framework more concrete, we can unpack these two ideas.

First, scene locations are prioritized for attention on the basis of their poten-

tial cognitive relevance, rather than on the basis of their visual salience.

Cognitive relevance is based on semantic knowledge about the type of scene

in view, episodic knowledge about that particular scene if it has been expe-

rienced previously, and current scene interpretation and understanding

(Henderson & Ferreira, 2004). This information will be available, both from

initially generated semantic and spatial representations (i.e., gist) and

from more detailed representations of local scene regions and objects that

have already been attended and interpreted. These representations interact

with active goals related to knowledge of the task to assign priority for atten-

tion. At the same time, the visual scene is parsed to generate a visuospatial

representation that explicitly codes potential attentional targets. This repre-

sentation can be thought of as a “flat landscape” (in contrast to a peaked

salience map) in that the potential attentional targets are not yet ranked

for attentional priority (Henderson et al., 2007). Attentional target ranking

is assigned to the flat landscape of potential targets based on cognitive

representations, with attention then directed to those potential targets based

on their ranking of cognitive relevance.

What role does physical image salience play in this framework?

The image properties associated with image salience are computed early

in the visual system and contribute to the parse of the scene into perceptual

objects and regions, and to the generation of the visuospatial representation

of the scene and its regions over which attention can be directed. Regions

are more likely to be included in the visuospatial representation if they

are more different from their surround (i.e., are more salient). Critically,

though, the proposal is that priority ranking for attention is not based on

image salience, but instead on cognitive representations.

In summary, according to cognitive guidance, the scene image leads to

activation and retrieval of higher-level cognitive representations, interpre-

tations, and goals which are combined in a cognitive model, and this model

is the basis for ranking potential attentional targets. Cognitive guidance

theory therefore predicts that the spatial distribution of semantic features

in a scene plays a key role in guiding attention.
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3. Investigating cognitive guidance: Meaning maps

In the last several decades, a large percentage of the research on atten-

tional guidance in scenes has been (and to a large extent, continues to be)

motivated by ideas related to image guidance, with far less work on cognitive

guidance and almost no work on the role of the semantic content of

the scene on attentional guidance. For example, as of July 2020, Google

Scholar returned 98,000 titles given the search term “saliency map,” with

over 6200 in the first 6 months of 2020 alone. This is a surprising state of

affairs given the centrality of semantic understanding in scene perception.

After all, when we look at the world, we do not simply perceive a constel-

lation of image features or a gradation of salience. Instead, we perceive a

meaningful world that includes individual objects and their semantic content

(those are roses and they probably smell great), higher level concepts (this is a

garden), and a web of spatial relationships (the roses look great next to the

trellis). Why then has the emphasis in attention been so focused on image

salience? There are likely several reasons (Henderson, 2017). One appeal

of saliency models of this type is that visual salience is neurobiologically

plausible in the sense that the visual system is known to compute the assumed

primitive features early in visual analysis. In addition, beginning with the

introduction of early formative saliency models, image saliency has been

relatively easy to quantify and compute, providing quantitative predictions

about attentional priority (Borji & Itti, 2013; Harel et al., 2006; Itti & Koch,

2001; Itti et al., 1998; Parkhurst et al., 2002b; Torralba et al., 2006). These

models can take a complex image and generate a saliency map without

human intervention. That is, saliency maps are image computable. This

has made the study of image salience tractable in both behavioral research

and in neuroscience (Henderson, 2007, 2017). In contrast, it has been far

more difficult to generate quantitative or computational models of scene

semantics, a likely reason that saliency models have been more popular

(Henderson, 2007, 2017). This difference has made it difficult to experimen-

tally compare the influence of image salience and cognitive models, because

that would require representing both physical salience and cognitive content

in a format that allows for comparable quantitative predictions of attentional

priority across a scene. Given this difficulty, studies of cognitive-based

models of attention have typically focused on one or at most a small number

of specific scene regions or objects whose meaning in the context of the

scene can be measured and manipulated (Brockmole & Henderson, 2008;
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De Graef, Christiaens, & d’Ydewalle, 1990; Henderson, Weeks, &

Hollingworth, 1999; Loftus & Mackworth, 1978; Võ & Henderson,

2009). However, these types of studies do not allow a direct comparison

of image salience and meaning across the entire scene.

Much of the recent research in my lab has therefore been focused on

addressing this challenge: If we want to compare image guidance and cog-

nitive guidance theories of attention, how can we generate and represent

the spatial distribution of semantic features likely to be encoded in a cogni-

tive model of a scene in a format that supports direct comparison with an

image saliency map? To address this question, we took inspiration from

two classic scene viewing papers (Antes, 1974; Mackworth & Morandi,

1967) as well as our own previous work (Henderson et al., 2007) and intro-

duced a new approach based on what we call meaning maps (Henderson &

Hayes, 2017). The key idea of a meaning map is that it represents the spatial

distribution of the semantic features in a scene in the same format as a

saliency map represents the spatial distribution of physical salience.

Meaning maps are based on crowd-sourced responses given by large

numbers of naı̈ve subjects who rate small scene patches based on their

semantic attributes. Specifically, for our standard context-free ratings,

photographs of real-world environments are divided into dense arrays of

objectively defined circular overlapping patches at two spatial scales. The

spatial scales and numbers of patches that we use are based on simulations

showing that ground truth visual properties of scenes can be recovered from

them (Henderson & Hayes, 2017). Large numbers of raters each rate a

randomly selected subset of individually presented patches taken from the

entire set of scenes to be rated. Rating questions can vary as desired; our

baseline question asks people to rate patches based on how informative and

recognizable they are. Meaning maps are constructed for each scene by aver-

aging the ratings by pixel over patches and raters and smoothing the results.

Critically, the ratings show that meaning is spatially distributed non-uniformly

across scenes, with some scene regions relatively high in semantic content and

other regions relatively low. Meaning maps represent this spatial distribution

of semantic content pixel by pixel, and so offer a foundation for directly

comparing the relative roles of meaning and image salience on attentional

guidance. In the same way that image saliency maps generate predictions

concerning attentional priority that can be tested against eye movements or

other measures of attention, so too can meaning maps. This allows contrasting

predictions from scene semantics and image salience to be directly compared

for the same scenes and viewers (Henderson & Hayes, 2017).

102 John M. Henderson



Meaning maps and saliency maps provide predictions about attentional

priority: Which regions of a scene are likely and unlikely to be attended?

The critical empirical question we can then ask is: How well do these

predictions match observed spatial distributions of attention produced by

people when they view scenes? Following common practice in the scene

attention literature, we operationalize the spatial distribution of attention

over a scene as an attention map derived from fixation density. In this

way, attention maps reflect the spatial distribution of eye fixations across

the scene, with some scene regions receiving relatively more and some

regions relatively fewer fixations. Attention maps can either be unweighted,

or weighted by the duration of each fixation. Notably, attention maps rep-

resent attention in the same format and on the same scale as meaning and

saliency maps. This allows meaning and saliency maps to be directly assessed

against attention maps. In this way, the degree to which the spatial distribu-

tion of meaning and salience predict the distribution of attention over scenes

can be determined.

An important challenge when comparing meaning maps and saliency

maps is that it is highly likely that image salience and semantic content

are correlated in scenes (Henderson et al., 2007). An important implication

of this finding is that previous results demonstrating a relationship between

saliency maps and attention cannot be taken directly as evidence for a func-

tional role of salience in guiding attention. As will become clear below, in all

of the studies reviewed in this chapter, the correlation between meaning

maps and saliency maps is taken into account in the analyses.

4. Review of meaning map results

In an initial study introducing meaning maps, Henderson and Hayes

(2017) asked people to view a set of photographs of real-world environments

(i.e., scenes) while their eye movements were recorded. Subjects were given

two viewing tasks, a memorization task in which they were asked to prepare

for a memory test that would be given after the viewing session, and an

aesthetic judgment task in which they were asked to indicate how much

they liked each scene. In the analysis, attention maps were produced from

viewer fixations, and these attention maps were then compared to meaning

and saliency maps. The results showed that both meaning and image salience

were correlated with attention, but that when the correlation between

meaning and salience was statistically controlled, only meaning accounted

for unique attentional variance. In other words, meaning accounted for
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all the variance accounted for by salience, plus additional variance, whereas

saliency account for only a subset of the variance in attention accounted for

by meaning and no additional variance. This result was found in both the

scene memorization and the aesthetic judgment tasks. Given the strong

observed correlation between meaning and salience, and the finding that

only meaning accounted for variance in attention when that correlation

was controlled, we concluded that meaning was the main factor guiding

attention through the scenes in this study.

In this first study, we focused on the spatial distribution of attention by

measuring the density of fixations across each scene (Henderson & Hayes,

2017). However, fixations also vary in durations, and this variation reflects

visual and cognitive processes (Glaholt & Reingold, 2012; Henderson,

Nuthmann, & Luke, 2013; Henderson & Pierce, 2008; Henderson &

Smith, 2009; Luke, Nuthmann, & Henderson, 2013; Nuthmann, Smith,

Engbert, & Henderson, 2010; van Diepen, Ruelens, & d’Ydewalle,

1999). Therefore, we reanalyzed the data from this study to see if the results

would differ when we explicitly included fixation durations (attentional

dwell time) at each location (Henderson & Hayes, 2018). This required

generating attention maps in which each fixation was weighted by its

duration. In these maps, fixations longer in duration were weighted more

heavily. We then asked whether the meaning maps or saliency maps best

matched the duration-weighted attention maps. Using the same analysis

methods as we used for the unweighted analyses in Henderson and Hayes

(2017), we replicated all of the critical data patterns that we observed in

the original study (Henderson & Hayes, 2018). Once again, both meaning

and salience were associated with attention, but when the shared variance

was partialled out, only meaning accounted for unique variance in attention.

In sum, both when attention maps were based only on location and when

they included fixation duration, the answer was the same: only meaning

maps uniquely predicted attention.

4.1 Scene description tasks
In our initial investigation comparing meaning maps to image saliency

maps, subjects were engaged in memorization and aesthetic judgment tasks

(Henderson & Hayes, 2017, 2018). In those tasks, subjects gave their

responses after they viewed the scenes, either right after each scene (aesthetic

judgment) or at the end of the session (memorization). It may be that

under these conditions, subjects are not strongly motivated to direct their

104 John M. Henderson



attention as carefully or under as much control as they would in a task that

requires greater real-time scene engagement. Perhaps in a more on-line task,

image saliency would play a greater role. To test this possibility, we inves-

tigated how well meaning and image salience account for attention when

people are actively engaged in tasks that required them to respond to each

scene continuously in real time. For this purpose, in collaboration with

Gwendolyn Rehrig and Fernanda Ferreira, we developed a scene descrip-

tion task (Henderson, Hayes, Rehrig, & Ferreira, 2018).

The idea behind scene description is that language production is incre-

mental: People interleave planning and talking rather than planning an entire

utterance before beginning to speak (Ferreira & Swets, 2002). This means

that in a scene description task, people typically plan and produce small units

of speech (for example, words and phrases) that are tied to each scene region

as that region is attended. Scene description can therefore be used to exam-

ine how semantic information and image salience are related to attention

when attention to specific scene regions is functional and necessary for

the task in real time. We used this basic scene description paradigm in

two experiments. First, in an action description experiment, subjects

described what someone might do in each scene. Second, in a general scene

description experiment, subjects simply described each scene however they

liked. In both experiments, the scene was presented for 30 s, and subjects

began their description when the scene first appeared and continued talking

while it was in view. Their eye movements were also recorded during this

entire time. The eyetracking data were then analyzed in the sameway as they

were in our first two studies. The results again showed that both meaning

and salience were associated with the spatial distribution of attention, but

critically, when the correlation between meaning and salience was statisti-

cally controlled, only meaning accounted for unique variance in attention.

This result was seen in both the action description and general scene descrip-

tion experiments.

4.2 Free viewing and contextualized maps
In the literature on the influence of image salience on attention in scenes,

the preferred task has been free viewing, with no specific viewing task given

to viewers, and eyetracking data from free viewing has typically been used to

benchmark saliency models (Itti et al., 1998; Parkhurst et al., 2002a, 2002b). In

contrast, our experiments comparing meaning and image salience reviewed so

far were based on directed viewing tasks with explicit viewing instructions.
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Perhaps these tasks are biased toward semantic features, and image saliency

would dominate in free viewing. To test this hypothesis, Candace Peacock

and colleagues conducted a free viewing experiment that was otherwise

similar to our previous experiments (Peacock, Hayes, & Henderson,

2019b). If free viewing is meaning-neutral, then perhaps an image saliency

advantage would appear under those instructions. In the experiment, sub-

jects were asked to view each scene “naturally, as they would in their daily

lives,” and were not required to provide any response either during or after

viewing.

The results were once again clear cut: Meaning was a better predictor

of the spatial distribution of attention than image salience, with meaning

accounting for substantial additional unique variance over salience but

salience accounting for no unique variance over meaning. Consistent with

Henderson and Hayes (2018), this conclusion did not change depending on

whether fixations were unweighted or were weighted by fixation duration

(Peacock et al., 2019b).

4.3 Is meaning mandatory? Scene viewing tasks
with irrelevant meaning

So far, across the five tasks in which we compared the influence of meaning

and image salience on attention in scenes (memorization, aesthetic judg-

ment, scene description, action description, and free viewing), meaning

was potentially relevant to accomplishing the task. Perhaps all of these tasks

more or less bias attention toward meaning, but if we could explicitly make

saliency relevant and meaning irrelevant, salience would better predict

attention. To test this hypothesis, we extended our study of attention and

examined the role of meaning and image salience in three experiments in

which meaning was completely irrelevant. In one study, meaning was irrel-

evant and saliency was relevant for performing the task, and in the second

study, neither meaning nor saliency were relevant.

In the first study, as part of her PhD research, Candace Peacock conducted

two experiments designed to focus viewers on image properties and to induce

them to ignore scene semantics (Peacock, Hayes, & Henderson, 2019a). In

one experiment, subjects were asked to rate each scene for its overall bright-

ness. Note that in this brightness rating task, attending to brightness was

critical to accomplishing the task, whereas attending to meaningful scene

regions was completely irrelevant. Brightness is a content-free visual feature

that is central to saliency computations. In a second experiment, subjects

were asked to count the number of bright areas in each scene. Here again,
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attending to the relative brightness of areas in a scene was critical to per-

forming the task, but attending to meaningful scene regions was completely

irrelevant.

The reasoning behind these experiments was this: If, in the previous

experiments, attention was guided by meaning because the tasks used in

those experiments emphasized the semantic content of the scenes, then

the relationship between meaning and attention should no longer hold

in the new tasks that focused on brightness, a physical feature of the scene

images. On the other hand, if the guidance of attention by scene semantics is

a fundamental property of the attention system, then the strong relationship

between the spatial distribution of meaning and the spatial distribution of

attention should continue to hold even when meaning is irrelevant to the

viewing task.

The striking finding was that in both the brightness rating and brightness

search experiments, the results were very similar to those of the prior exper-

iments:When the correlation betweenmeaning and salience was controlled,

only meaning uniquely accounted for significant variance in attention.

These results demonstrated that the relationship between meaning and

attention is not restricted to viewing tasks that bias the attentional system

toward meaning. It appears that meaning is used to guide attention in scenes

even when meaning is irrelevant to the task, supporting theories in which

scene semantics play a central and perhaps mandatory role in setting

attentional priority in scenes.

Perhaps any scene viewing task that requires engaging with a scene,

including evaluating a scene-dependent feature or image property of the

scene itself such as brightness, mandatorily leads to control of attention

by scene semantics. Could it be that a task in which a scene is present but

all aspects of that scene are irrelevant to the task would show a stronger effect

of image salience and a lesser effect of meaning on attention? To test this idea,

Taylor Hayes conducted a third experiment using a scene-independent visual

search paradigm in which scene semantics and image salience were both

unrelated to the search (Hayes & Henderson, 2019b). In this task, subjects

were asked to search for letter targets that were randomly superimposed

on top of scenes. The target letters were sufficiently difficult to find that

subjects had to look for them carefully with eye movements. Importantly,

in the 40 critical scenes that were analyzed, the letter targets were absent

so that subjects would have to search throughout the trial. The absence of

targets in the critical scenes also meant that we did not have to worry

about any potential effects of the target letters themselves on attention.
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The data were analyzed in the same way as the previous experiments, and

the main result was similar. Once again, the spatial distribution of attention

remained more strongly correlated with meaning than with image-based

saliency, and when the correlation between meaning and salience was

controlled, only meaning uniquely accounted for significant variance in

attention. This result was observed even though the spatial distribution of

meaning across a scene was completely irrelevant to the letter search task,

which could be accomplished by completely ignoring the scene.

In sum, the results from these three experiments support the view that

scene semantics play a central role in setting attentional priority in scenes.

Furthermore, it appears that meaning is used to guide attention in scenes

even when meaning is irrelevant to the task, consistent with the idea that

the extraction and use of scene semantics in setting attentional priority is

mandatory when an interpretable real-world scene is present.

4.4 Verbal encoding
We often use language to encode visual information in working memory.

Scene meaning is likely easier to encode verbally than image salience.

Could it be that the advantage of scene meaning over image salience in

accounting for attention is due to verbal encoding of the scene? To test this

hypothesis, Gwendolyn Rehrig and colleagues conducted two experiments

in which people were asked to do a secondary articulatory suppression task

at the same time that they viewed scenes (Rehrig, Hayes, Henderson, et al.,

2020). In the first experiment, articulatory suppression was manipulated

between-subjects, and the verbal suppression task was to repeat a different

sequence of three digits aloud while viewing each scene. In the second

experiment, articulatory suppression was manipulated within-subject in a

block design, and the suppression task was to repeat a different sequence

of the names of three simple shapes aloud while viewing each scene. The

viewing task was to prepare for a later scene memory test. As usual, meaning

maps and saliency maps were generated for each of the scenes.

The logic of these experiments was this: If verbal encoding mediates the

relationship between meaning and attention, then meaning should explain

greater (especially unique) variance in attention than image salience in the

control no-suppression conditions but not in the suppression conditions.

On the other hand, if verbal encoding does not underlie the meaning

advantage over image salience, then meaning should explain greater (and

especially unique) variance in attention over salience whether or not subjects

are engaged in a verbal suppression task.
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The results were clear. Once again, in both experiments, meaning

explained more of the variance in visual attention than image salience

did, and only meaning explained unique variance in attention, both with

and without the suppression tasks. The results offer no support for the

hypothesis that the meaning advantage over image salience in accounting

for attention during scene viewing is due to verbal encoding of the scenes.

4.5 Contextualized meaning maps
In the experiments discussed so far, local scenemeaning was based on human

ratings of individual scene patches presented to raters independently of full

scenes. These experiments therefore focused on the role of what we have

called scene-intrinsic context-free meaning (Hayes & Henderson, 2019a,

2019b). By scene-intrinsic, we mean that the meaning derives from the con-

tents of the scene alone and not from the contents in interaction with

particular tasks or goals. By context-free, we mean that the meaning derives

from each local region without regard to the overall scene meaning. We

constructed initial meaning maps in this way because we were interested

in investigating the role of local scene meaning on attention rather than

the relationship between local semantic content and the rest of the scene.

We also did not want to bias comparisons with image salience by including

contextual information that saliency map models do not know about.

However, the meaning of an object or local scene element is often

influenced by the context in which that object appears (Henderson et al.,

1999; Loftus & Mackworth, 1978; Spotorno, Tatler, & Faure, 2013;

Võ &Henderson, 2009). It could be that meaning in the context of the scene

(which we refer to as contextualized meaning) is more related than context-

free meaning to how attention is distributed in a scene. To examine this

hypothesis, Candace Peacock and colleagues generated new contextualized

meaning maps from meaning ratings for scene patches that were presented

along with their full scenes (Peacock et al., 2019b). Contextualized meaning

maps were generated using the same patches and the identical method as the

context-free meaning maps, except that the raters were asked to rate how

informative or recognizable each patch was in the context of the larger

scene. To aid this rating decision, each patch was circled in green in the

context scene. We then compared attention maps from free viewing to

the original context-free and the new contextualized meaning maps. The

important result was that both types of meaning maps produced very similar

results; neither predicted attention better than the other, and both predicted

substantial unique variance over image salience. This convergence in results
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suggests that the context-free meaning maps are generally a good represen-

tation of the spatial distribution of local meaning across a scene. These results

also suggest that the context-free meaning maps do not lose much critical

semantic information despite the fact that sometimes only parts of large

objects and scene regions are shown in the rated patches. (In the contextu-

alized ratings, the larger objects are visible in the context scene image.)

Interestingly, the results suggest that a good deal of the variance in the distri-

bution of attention across a scene can be captured by local semantic features

without consideration of how those features relate to the rest of the scene.

4.6 Early vs late meaning effects
Perhaps image salience is more likely to guide attention early in viewing,

when a scene first becomes visible, but is subsequently overridden or

suppressed over time as meaning comes on-line to guide attention

(Anderson, Donk, & Meeter, 2016; Anderson, Ort, Kruijne, Meeter, &

Donk, 2015; Henderson & Hollingworth, 1999; Parkhurst et al., 2002a,

2002b). This hypothesis predicts that very early in scene viewing, before

suppression can be applied, attentional guidance by salience should be

stronger, and that later, when sufficient time is available for suppression

to operate, it should be weaker or absent. This possibility is important

theoretically because it would suggest that image-based saliency maps are

in fact generated for scenes, but that they are then inhibited as cognitive

representations become active and cognitive guidance becomes dominant.

To test this hypothesis, in each of the studies reviewed here, sub-analyses

were performed in which the earliest fixations were examined to determine

whether salience had a dominant or at least larger effect compared to mean-

ing for the first few fixations in scenes. In every case, the results were very

similar to the overall pattern: meaning and salience were both associated

with the spatial distribution of attention, but when the correlation between

meaning and salience was statistically controlled, only meaning accounted

for unique variance in attention even in the earliest fixations, including

the very first viewer-generated fixation. These results are not consistent

with the hypothesis that image salience plays a more important role early

in scene viewing.

4.7 Center bias
Viewer center bias refers to the common finding that human subjects tend to

spend more time looking near the center than the periphery of a scene image
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(Tatler, 2007). Image center bias refers to the possibility that more information

is to be found at the center of an image than the periphery. For example, a

photographer may place the most visually salient or meaningful information

near the center of a photograph. The majority of influential image saliency

models therefore include significant model center bias to account for viewer

center bias (Bruce,Wloka, Frosst, Rahman, & Tsotsos, 2015). Because most

image saliency models either add model center bias or are built to generate

model center bias to account for viewer center bias, model predictions are

typically generated from a combination of the model’s built-in core assump-

tions and the added model center bias. It is therefore instructive to ask how

well saliencymodels are able to predict attention based on their core assump-

tions separated from their center biases, and howwell those core assumptions

do compared to meaning maps.

To answer these questions, Taylor Hayes compared how well three

influential and widely cited image saliency models (Itti and Koch saliency

model with Gaussian blur, Itti et al., 1998; Koch & Ullman, 1985; Harel

et al., 2006; graph-based visual saliency (GBVS) model, Harel et al.,

2006; and attention by information maximization (AIM) saliency model,

Bruce & Tsotsos, 2009) predicted attention compared to their model center

biases (Hayes & Henderson, 2019a). These image saliency models were

chosen because they represent three approaches for using bottom-up

low-level image features to generate saliency maps. They also incorporate

different types and different amounts of model center bias. For example,

the two standard saliency models (Itti and Koch with blur, and GBVS)

include substantial model center bias, whereas AIM includes substantially

less model center bias. These models were also compared to context-free

meaning maps.

The basic approach was to separate the center bias of each model from its

core model predictions. This was accomplished by running each model over

a large independent set of scene images (the MIT-1003 benchmark data set)

that were not used in the attention experiments, and then to extract the

general center bias that each model produced across this entire set of scenes.

Each model’s core assumptions (model predictions without its center bias)

and model center bias were then assessed separately against attention data

from scene viewing. This analysis used the attention data from five eye

movement experiments over three viewing tasks: scene memorization,

aesthetic judgment, and visual search. Each of these tasks produces different

amounts and patterns of viewer center bias, providing a varied data set to

compare to the saliency models.
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We found that for viewing tasks that produced significant viewer center

bias (memorization and aesthetic judgment), the image saliency models

actually performed significantly worse (on average accounted for 23% less

variance) than their center biases alone, whereas meaning maps performed

significantly better (on average accounted for 10% more variance) than

center bias alone in all three tasks. This is a striking finding because it suggests

a large part of the predictive work in saliency models is done by their center

biases and not by their core assumptions. In sum, these results suggested

that when viewer center bias is present, adding low-level image feature

saliency actually accounts for attention less well than a model simply based

on center bias.

5. Conclusion

In this chapter I have summarized the idea that visual attention may be

driven more by the semantic content of a visual scene than directly by its

image features. I have also reviewed the meaning map approach to investi-

gating this issue, and shown how we can use it to compare the roles of

semantic features and image features (image salience) on attention during

scene viewing. The reviewed results strongly support the hypothesis that

meaning plays a fundamental and mandatory role in attentional guidance

in real-world scenes.

An advantage of saliency maps compared to meaning maps is that they

are image computable: They can be derived automatically (without human

intervention) by computational models. On the other hand, meaning maps

are not image computable: They require human raters. For this reason,

saliency models might be more satisfying. However, in our view, the inter-

esting psychological claim of the image salience hypothesis is independent of

its computability. This claim is that human attention in real-world scenes is

driven by contrasts in basic semantically uninterpreted image features. The

alternative hypothesis we have proposed is that image salience effects are

actually meaning effects due to the fact that image features and semantic

features in scenes are correlated (Henderson&Hayes, 2017). And as reviewed

above, this is what we have found over many experiments, with very little

if any unique variance accounted for by image salience once the variance

accounted for by semantic features has been controlled. This comparison is

independent of computability, and instead is based on the fundamental

theoretical assumptions of the two competing psychological theories.
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That is, we are concerned with psychological principles, not modeling.

Though there are certainly advantages to instantiating theoretical assumptions

as a working model, there is no logical requirement that testing psychological

theories of attention requires image computability.

It is important to highlight that meaning maps do not provide a theory of

scene semantics. They are simply a method for tapping into and representing

human judgments concerning how the semantic features in a scene are dis-

tributed across space. That is, meaning maps provide a representation of the

spatial distribution of meaning across a scene, but do not offer direct insight

into the nature of scene semantics or how they are represented in the mind

and brain. That said, the meaning map approach may be useful as a tool for

getting a handle on the nature of scene semantics. For example, by changing

the nature of the rating question, we might be able to create semantic feature

maps that represent more specific targeted aspects of scene semantics.

These maps could then be compared to the distribution of attention to

determine how well they match the attended areas of a scene. The contex-

tualized meaning maps discussed in this chapter provide one example of

this approach in which we asked whether meaning maps based on scene

context differ from those that are context-free. As another example, we have

recently investigated “grasp maps” that represent whether an object can

be manipulated, a particular semantic feature of scene space. We compared

grasp maps to general meaning maps and image saliency maps and found that

both meaning maps and grasp maps were predictive of attention (Rehrig,

Peacock, Hayes, Henderson, & Ferreira, 2020).

Similarly, we might consider other scene-intrinsic semantic features, as

well goal-related semantic features that are based in part on their relationship

to the viewer’s goals. In this way we might be able to unravel how different

types of meaning are related to each other and to performance over

different perceptual and cognitive tasks. The meaning map approach pro-

vides a tool for pursuing these questions. The meaning maps we have inves-

tigated so far based on context-free ratings may not be the type of meaning

most associated with attention, and we may therefore be underestimating

the relationship between semantic features and attention.

Funding
This research was supported by the National Eye Institute of the National Institutes of Health

under award number R01EY027792. The content is solely the responsibility of the authors

and does not necessarily represent the official views of the National Institutes of Health.

113Meaning and attention in scenes



Acknowledgement
We thank the members of the UC Davis visual cognition group for their feedback on

this work.

Conflicts of interest
The authors declare no conflicts of interest.

References
Anderson, N. C., Donk, M., & Meeter, M. (2016). The influence of a scene preview on eye

movement behavior in natural scenes. Psychonomic Bulletin & Review, 23(6), 1794–1801.
Anderson, N. C., Ort, E., Kruijne,W., Meeter, M., &Donk,M. (2015). It depends on when

you look at it: Salience influences eye movements in natural scene viewing and search
early in time. Journal of Vision, 15(5), 9.

Antes, J. R. (1974). The time course of picture viewing. Journal of Experimental Psychology,
103(1), 62–70.

Borji, A., & Itti, L. (2013). State-of-the-art in visual attention modeling. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 35(1), 185–207. https://doi.org/10.1109/
TPAMI.2012.89.

Borji, A., Parks, D., & Itti, L. (2014). Complementary effects of gaze direction and early
saliency in guiding fixations during free viewing. Journal of Vision, 14(13), 3.

Borji, A., Sihite, D. N., & Itti, L. (2013). Quantitative analysis of human-model agreement in
visual saliency modeling: A comparative study. IEEE Transactions on Image Processing,
22(1), 55–69. https://doi.org/10.1109/TIP.2012.2210727.

Brockmole, J. R., & Henderson, J. M. (2008). Prioritizing new objects for eye fixation
in real-world scenes: Effects of object-scene consistency. Visual Cognition, 16(2–3),
375–390. https://doi.org/10.1080/13506280701453623.

Bruce, N. D., & Tsotsos, J. K. (2009). Saliency, attention, and visual search: An information
theoretic approach. Journal of Vision, 9(3), 5–5.

Bruce, N. D., Wloka, C., Frosst, N., Rahman, S., & Tsotsos, J. K. (2015). On computational
modeling of visual saliency: Examining what’s right, and what’s left.Vision Research, 116,
95–112.

Buswell, G. T. (1935). How people look at pictures. University of Chicago Press Chicago.
Castelhano, M. S., Mack, M. L., & Henderson, J. M. (2009). Viewing task influences eye

movement control during active scene perception. Journal of Vision, 9(3), 6.1–15.
De Graef, P., Christiaens, D., & d’Ydewalle, G. (1990). Perceptual effects of scene context on

object identification. Psychological Research, 52(4), 317–329. https://doi.org/10.1007/
BF00868064.

Einh€auser, W., Rutishauser, U., & Koch, C. (2008). Task-demands can immediately reverse
the effects of sensory-driven saliency in complex visual stimuli. Journal of Vision, 8(2),
2.1–19. https://doi.org/10.1167/8.2.2.

Ferreira, F., & Swets, B. (2002). How incremental is language production? Evidence from the
production of utterances requiring the computation of arithmetic sums. Journal of Memory
and Language, 46(1), 57–84. https://doi.org/10.1006/jmla.2001.2797.

Foulsham, T., & Underwood, G. (2007). How does the purpose of inspection influence the
potency of visual salience in scene perception? Perception, 36(8), 1123–1138. https://doi.
org/10.1068/p5659.

Glaholt, M. G., & Reingold, E. M. (2012). Direct control of fixation times in scene viewing:
Evidence from analysis of the distribution of first fixation duration. Visual Cognition,
20(6), 605–626.

114 John M. Henderson

http://refhub.elsevier.com/S0079-7421(20)30027-X/rf9000
http://refhub.elsevier.com/S0079-7421(20)30027-X/rf9000
http://refhub.elsevier.com/S0079-7421(20)30027-X/rf9005
http://refhub.elsevier.com/S0079-7421(20)30027-X/rf9005
http://refhub.elsevier.com/S0079-7421(20)30027-X/rf9005
http://refhub.elsevier.com/S0079-7421(20)30027-X/rf0010
http://refhub.elsevier.com/S0079-7421(20)30027-X/rf0010
https://doi.org/10.1109/TPAMI.2012.89
https://doi.org/10.1109/TPAMI.2012.89
https://doi.org/10.1109/TPAMI.2012.89
http://refhub.elsevier.com/S0079-7421(20)30027-X/rf0020
http://refhub.elsevier.com/S0079-7421(20)30027-X/rf0020
https://doi.org/10.1109/TIP.2012.2210727
https://doi.org/10.1109/TIP.2012.2210727
https://doi.org/10.1080/13506280701453623
https://doi.org/10.1080/13506280701453623
http://refhub.elsevier.com/S0079-7421(20)30027-X/rf9800
http://refhub.elsevier.com/S0079-7421(20)30027-X/rf9800
http://refhub.elsevier.com/S0079-7421(20)30027-X/rf9875
http://refhub.elsevier.com/S0079-7421(20)30027-X/rf9875
http://refhub.elsevier.com/S0079-7421(20)30027-X/rf9875
http://refhub.elsevier.com/S0079-7421(20)30027-X/rf0035
http://refhub.elsevier.com/S0079-7421(20)30027-X/rf0040
http://refhub.elsevier.com/S0079-7421(20)30027-X/rf0040
https://doi.org/10.1007/BF00868064
https://doi.org/10.1007/BF00868064
https://doi.org/10.1007/BF00868064
https://doi.org/10.1167/8.2.2
https://doi.org/10.1167/8.2.2
https://doi.org/10.1006/jmla.2001.2797
https://doi.org/10.1006/jmla.2001.2797
https://doi.org/10.1068/p5659
https://doi.org/10.1068/p5659
https://doi.org/10.1068/p5659
http://refhub.elsevier.com/S0079-7421(20)30027-X/rf0065
http://refhub.elsevier.com/S0079-7421(20)30027-X/rf0065
http://refhub.elsevier.com/S0079-7421(20)30027-X/rf0065


Harel, J., Koch, C., & Perona, P. (2006). Graph-based visual saliency. Advances in Neural
Information Processing Systems, 19, 1–8. https://doi.org/10.1.1.70.2254.

Hayes, T. R., & Henderson, J. M. (2019a). Center bias outperforms image salience but not
semantics in accounting for attention during scene viewing. Attention, Perception, &
Psychophysics, 82, 985–994. https://doi.org/10.3758/s13414-019-01849-7.

Hayes, T. R., & Henderson, J. M. (2019b). Scene semantics involuntarily guide attention
during visual search. Psychonomic Bulletin & Review, 26(5), 1683–1689. https://doi.
org/10.3758/s13423-019-01642-5.

Hayhoe, M. M., & Ballard, D. (2005). Eye movements in natural behavior. Trends in
Cognitive Sciences, 9(4), 188–194.

Hayhoe, M. M., & Ballard, D. (2014). Modeling task control of eye movements mini-
review. Current Biology, 24(13), R622–R628. https://doi.org/10.1016/j.cub.2014.
05.020.

Hayhoe, M. M., Shrivastava, A., Mruczek, R., & Pelz, J. B. (2003). Visual memory and
motor planning in a natural task. Journal of Vision, 3(1), 49–63. https://doi.org/10.
1167/3.1.6.

Henderson, J. M. (2003). Human gaze control during real-world scene perception. Trends in
Cognitive Sciences, 7(11), 498–504. https://doi.org/10.1016/j.tics.2003.09.006.

Henderson, J. M. (2007). Regarding scenes. Current Directions in Psychological Science, 16(4),
219–222. https://doi.org/10.1111/j.1467-8721.2007.00507.x.

Henderson, J. M. (2011). Eye movements and scene perception. In S. P. Liversedge,
I. D. Gilchrist, & S. Everling (Eds.), Vol. 2015. The oxford handbook of eye movements
(pp. 593–606). Oxford; New York: Oxford University Press. Issue January.

Henderson, J. M. (2017). Gaze control as prediction. Trends in Cognitive Sciences, 21(1),
15–23. https://doi.org/10.1016/j.tics.2016.11.003.

Henderson, J. M., Brockmole, J. R., Castelhano, M. S., & Mack, M. (2007). Visual saliency
does not account for eye movements during visual search in real-world scenes.
In R. P. G. Van Gompel, M. H. Fischer, W. S. Murray, & R. L. Hill (Eds.), Eye move-
ments: A window on mind and brain (pp. 537–562). Elsevier Ltd. https://doi.org/10.1016/
B978-008044980-7/50027-6

Henderson, J. M., & Ferreira, F. (2004). Scene perception for psycholinguists. https://doi.org/10.
4324/9780203488430.

Henderson, J. M., & Hayes, T. R. (2017). Meaning-based guidance of attention in scenes as
revealed by meaning maps.Nature Human Behaviour, 1(10), 743–747. https://doi.org/10.
1038/s41562-017-0208-0.

Henderson, J. M., & Hayes, T. R. (2018). Meaning guides attention in real-world scene
images: Evidence from eye movements and meaning maps. Journal of Vision, 18, 10.

Henderson, J. M., Hayes, T. R., Rehrig, G., & Ferreira, F. (2018). Meaning guides attention
during real-world scene description. Scientific Reports, 8(1), 1–9. https://doi.org/10.
1038/s41598-018-31894-5.

Henderson, J. M., & Hollingworth, A. (1999). High-level scene perception. Annual Review
of Psychology, 50, 243–271. https://doi.org/10.1146/annurev.psych.50.1.243.

Henderson, J. M., & Hollingworth, A. (2003). Global transsaccadic change blindness during
scene perception. Psychological Science, 14(5), 493–497. https://doi.org/10.1111/1467-
9280.02459.

Henderson, J. M., Malcolm, G. L., & Schandl, C. (2009). Searching in the dark: Cognitive
relevance drives attention in real-world scenes. Psychonomic Bulletin & Review, 16(5),
850–856.

Henderson, J. M., Nuthmann, A., & Luke, S. G. (2013). Eye movement control during
scene viewing: Immediate effects of scene luminance on fixation durations. Journal of
Experimental Psychology: Human Perception and Performance, 39(2), 318–322. https://doi.
org/10.1037/a0031224.

115Meaning and attention in scenes

http://refhub.elsevier.com/S0079-7421(20)30027-X/rf0070
http://refhub.elsevier.com/S0079-7421(20)30027-X/rf0070
http://refhub.elsevier.com/S0079-7421(20)30027-X/rf0070
https://doi.org/10.3758/s13414-019-01849-7
https://doi.org/10.3758/s13414-019-01849-7
https://doi.org/10.3758/s13423-019-01642-5
https://doi.org/10.3758/s13423-019-01642-5
https://doi.org/10.3758/s13423-019-01642-5
http://refhub.elsevier.com/S0079-7421(20)30027-X/rf0085
http://refhub.elsevier.com/S0079-7421(20)30027-X/rf0085
https://doi.org/10.1016/j.cub.2014.05.020
https://doi.org/10.1016/j.cub.2014.05.020
https://doi.org/10.1016/j.cub.2014.05.020
https://doi.org/10.1167/3.1.6
https://doi.org/10.1167/3.1.6
https://doi.org/10.1167/3.1.6
https://doi.org/10.1016/j.tics.2003.09.006
https://doi.org/10.1016/j.tics.2003.09.006
https://doi.org/10.1111/j.1467-8721.2007.00507.x
https://doi.org/10.1111/j.1467-8721.2007.00507.x
http://refhub.elsevier.com/S0079-7421(20)30027-X/rf0110
http://refhub.elsevier.com/S0079-7421(20)30027-X/rf0110
http://refhub.elsevier.com/S0079-7421(20)30027-X/rf0110
https://doi.org/10.1016/j.tics.2016.11.003
https://doi.org/10.1016/j.tics.2016.11.003
https://doi.org/10.1016/B978-008044980-7/50027-6
https://doi.org/10.1016/B978-008044980-7/50027-6
https://doi.org/10.1016/B978-008044980-7/50027-6
https://doi.org/10.4324/9780203488430
https://doi.org/10.4324/9780203488430
https://doi.org/10.4324/9780203488430
https://doi.org/10.1038/s41562-017-0208-0
https://doi.org/10.1038/s41562-017-0208-0
https://doi.org/10.1038/s41562-017-0208-0
http://refhub.elsevier.com/S0079-7421(20)30027-X/rf0135
http://refhub.elsevier.com/S0079-7421(20)30027-X/rf0135
https://doi.org/10.1038/s41598-018-31894-5
https://doi.org/10.1038/s41598-018-31894-5
https://doi.org/10.1038/s41598-018-31894-5
https://doi.org/10.1146/annurev.psych.50.1.243
https://doi.org/10.1146/annurev.psych.50.1.243
https://doi.org/10.1111/1467-9280.02459
https://doi.org/10.1111/1467-9280.02459
https://doi.org/10.1111/1467-9280.02459
http://refhub.elsevier.com/S0079-7421(20)30027-X/rf0155
http://refhub.elsevier.com/S0079-7421(20)30027-X/rf0155
http://refhub.elsevier.com/S0079-7421(20)30027-X/rf0155
https://doi.org/10.1037/a0031224
https://doi.org/10.1037/a0031224
https://doi.org/10.1037/a0031224


Henderson, J. M., & Pierce, G. L. (2008). Eye movements during scene viewing: Evidence
for mixed control of fixation durations. Psychonomic Bulletin and Review, 15(3), 566–573.
https://doi.org/10.3758/PBR.15.3.566.

Henderson, J. M., & Smith, T. J. (2009). How are eye fixation durations controlled during
scene viewing? Further evidence from a scene onset delay paradigm. Visual Cognition,
17(6–7), 1055–1082. https://doi.org/10.1080/13506280802685552.

Henderson, J. M., Weeks, P. A., Jr., & Hollingworth, A. (1999). The effects of semantic
consistency on eye movements during complex scene viewing. Journal of Experimental
Psychology: Human Perception and Performance, 25, 210–228. https://doi.org/10.1037/
0096-1523.25.1.210.

Itti, L., & Koch, C. (2001). Computational modelling of visual attention. Nature Reviews
Neuroscience, 2(3), 194–203. https://doi.org/10.1038/35058500.

Itti, L., Koch, C., & Niebur, E. (1998). A model of saliency-based visual attention for rapid
scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(11),
1254–1259.

Koch, C., & Ullman, S. (1985). Shifts in selective visual attention: Towards the underlying
neural circuitry.HumanNeurobiology, 4, 219–227. https://doi.org/10.1007/978-94-009-
3833-5_5.

Land, M. F., &Hayhoe, M.M. (2001). In what ways do eye movements contribute to every-
day activities? Vision Research, 41(25–26), 3559–3565. https://doi.org/10.1016/S0042-
6989(01)00102-X.

Levin, D. T., Momen, N., Drivdahl, S. B., & Simons, D. J. (2000). Change blindness
blindness: The metacognitive error of overestimating change-detection ability. Visual
Cognition, 7(1–3), 397–412. https://doi.org/10.1080/135062800394865.

Liversedge, S. P., & Findlay, J. M. (2000). Saccadic eye movements and cognition. Trends in
Cognitive Sciences, 4(1), 6–14.

Loftus, G. R., &Mackworth, N. H. (1978). Cognitive determinants of fixation location dur-
ing picture viewing. Journal of Experimental Psychology: Human Perception and Performance,
4(4), 565–572. https://doi.org/10.1037/0096-1523.4.4.565.

Luke, S. G., Nuthmann, A., & Henderson, J. M. (2013). Eye movement control in scene
viewing and reading: Evidence from the stimulus onset delay paradigm. Journal of
Experimental Psychology: Human Perception and Performance, 39(1), 10–15. https://doi.
org/10.1037/a0030392.

Mackworth, N. H., &Morandi, A. J. (1967). The gaze selects informative details within pic-
tures. Perception & Psychophysics, 2(11), 547–552. https://doi.org/10.3758/BF03210264.

Neider, M. B., & Zelinsky, G. (2006). Scene context guides eye movements during visual
search. Vision Research, 46(5), 614–621.

Nuthmann, A., & Henderson, J. M. (2010). Object-based attentional selection in scene
viewing. Journal of Vision, 10(8), 20. https://doi.org/10.1167/10.8.20.

Nuthmann, A., Smith, T. J., Engbert, R., &Henderson, J.M. (2010). CRISP: A computational
model of fixation durations in scene viewing. Psychological Review, 117(2), 382–405. https://
doi.org/10.1037/a0018924.

Parkhurst, D., Law, K., &Niebur, E. (2002a). Modelling the role of salience in the allocation
of visual selective attention. Vision Research, 42(1), 107–123.

Parkhurst, D., Law, K., & Niebur, E. (2002b). Modeling the role of salience in the allocation
of overt visual attention. Vision Research, 42(1), 107–123. https://doi.org/10.1016/
S0042-6989(01)00250-4.

Peacock, C. E., Hayes, T. R., & Henderson, J. M. (2019a). Meaning guides attention during
scene viewing, even when it is irrelevant. Attention, Perception, & Psychophysics, 81(1),
20–34. https://doi.org/10.3758/s13414-018-1607-7.

Peacock, C. E., Hayes, T. R., & Henderson, J. M. (2019b). The role of meaning in atten-
tional guidance during free viewing of real-world scenes. Acta Psychologica, 198, 102889.
https://doi.org/10.1016/j.actpsy.2019.102889.

116 John M. Henderson

https://doi.org/10.3758/PBR.15.3.566
https://doi.org/10.3758/PBR.15.3.566
https://doi.org/10.1080/13506280802685552
https://doi.org/10.1080/13506280802685552
https://doi.org/10.1037/0096-1523.25.1.210
https://doi.org/10.1037/0096-1523.25.1.210
https://doi.org/10.1037/0096-1523.25.1.210
https://doi.org/10.1038/35058500
https://doi.org/10.1038/35058500
http://refhub.elsevier.com/S0079-7421(20)30027-X/rf0185
http://refhub.elsevier.com/S0079-7421(20)30027-X/rf0185
http://refhub.elsevier.com/S0079-7421(20)30027-X/rf0185
https://doi.org/10.1007/978-94-009-3833-5_5
https://doi.org/10.1007/978-94-009-3833-5_5
https://doi.org/10.1007/978-94-009-3833-5_5
https://doi.org/10.1016/S0042-6989(01)00102-X
https://doi.org/10.1016/S0042-6989(01)00102-X
https://doi.org/10.1016/S0042-6989(01)00102-X
https://doi.org/10.1080/135062800394865
https://doi.org/10.1080/135062800394865
http://refhub.elsevier.com/S0079-7421(20)30027-X/rf0205
http://refhub.elsevier.com/S0079-7421(20)30027-X/rf0205
https://doi.org/10.1037/0096-1523.4.4.565
https://doi.org/10.1037/0096-1523.4.4.565
https://doi.org/10.1037/a0030392
https://doi.org/10.1037/a0030392
https://doi.org/10.1037/a0030392
https://doi.org/10.3758/BF03210264
https://doi.org/10.3758/BF03210264
http://refhub.elsevier.com/S0079-7421(20)30027-X/rf0225
http://refhub.elsevier.com/S0079-7421(20)30027-X/rf0225
https://doi.org/10.1167/10.8.20
https://doi.org/10.1167/10.8.20
https://doi.org/10.1037/a0018924
https://doi.org/10.1037/a0018924
https://doi.org/10.1037/a0018924
http://refhub.elsevier.com/S0079-7421(20)30027-X/rf0240
http://refhub.elsevier.com/S0079-7421(20)30027-X/rf0240
https://doi.org/10.1016/S0042-6989(01)00250-4
https://doi.org/10.1016/S0042-6989(01)00250-4
https://doi.org/10.1016/S0042-6989(01)00250-4
https://doi.org/10.3758/s13414-018-1607-7
https://doi.org/10.3758/s13414-018-1607-7
https://doi.org/10.1016/j.actpsy.2019.102889
https://doi.org/10.1016/j.actpsy.2019.102889


Rayner, K. (2009). The 35th Sir Frederick Bartlett Lecture: Eye movements and attention
in reading, scene perception, and visual search. The Quarterly Journal of Experimental
Psychology, 62(8), 1457–1506.

Rehrig, G., Hayes, T. R., Henderson, J. M., et al. (2020). When scenes speak louder than
words: Verbal encoding does not mediate the relationship between scene meaning and
visual attention. Memory and Cognition. https://doi.org/10.3758/s13421-020-01050-4.

Rehrig, G., Peacock, C. E., Hayes, T. R., Henderson, J. M., & Ferreira, F. (2020). Where
the action could be: Speakers look at graspable objects and meaningful scene regions
when describing potential actions. Journal of Experimental Psychology: Learning, Memory,
and Cognition. Advance online publication. https://doi.org/10.1037/xlm0000837.

Rensink, R. A., O’Regan, J. K., & Clark, J. J. (1997). To see or not to see: The need for
attention to perceive changes in scenes. Psychological Science, 8, 368–373.

Rothkopf, C. A., Ballard, D. H., & Hayhoe, M. M. (2007). Task and context determine
where you look. Journal of Vision, 7(14), 16.1–20. https://doi.org/10.1167/7.14.16.

Simons, D. J., & Levin, D. T. (1997). Change blindness. Trends in Cognitive Sciences, 1(7),
261–267.

Spotorno, S., Tatler, B. W., & Faure, S. (2013). Semantic consistency versus perceptual
salience in visual scenes: Findings from change detection. Acta Psychologica, 142(2),
168–176.

Tatler, B.W. (2007). The central fixation bias in scene viewing: Selecting an optimal viewing
position independently of motor biases and image feature distributions. Journal of Vision,
7(14), 4–4.

Tatler, B.W., Hayhoe, M.M., Land, M. F., & Ballard, D. H. (2011). Eye guidance in natural
vision: Reinterpreting salience. Journal of Vision, 11(5), 5.

Torralba, A., Oliva, A., Castelhano, M. S., & Henderson, J. M. (2006). Contextual guidance
of eye movements and attention in real-world scenes: The role of global features in
object search. Psychological Review, 113(4), 766–786. https://doi.org/10.1037/0033-
295X.113.4.766.

Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive
Psychology, 12, 97–136. https://doi.org/10.1016/0010-0285(80)90005-5.

Turano, K. A., Geruschat, D. R., & Baker, F. H. (2003). Oculomotor strategies for the direc-
tion of gaze tested with a real-world activity.Vision Research, 43(3), 333–346. https://doi.
org/10.1016/S0042-6989(02)00498-4.

van Diepen, P., Ruelens, L., & d’Ydewalle, G. (1999). Brief foveal masking during scene
perception. Acta Psychologica, 101(1), 91–103.
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